Введение
Репродуктивное здоровье женщин неразрывно связано с адекватным поступлением в организм микронутриентов для формирования и реализации адаптационного потенциала матери и ребенка [1]. При анализе коморбидности между репродуктивными проблемами и микронутриентной обеспеченностью женщин была показана доминирующая роль дефицита железа и фолатов [2, 3].
Железо — жизненно необходимый микроэлемент, участвующий в процессах эритропоэза, окислительного метаболизма, клеточного иммунитета, каталитической активности ферментов, тканевого дыхания. Железо необходимо для развития мозга и зрения плода и новорожденного, являясь детерминацией развития феррокинетического и иммунного импринтинга от матери к новорожденному [4]. У пациенток гинекологического профиля дефицит железа с развитием железодефицитной анемии (ЖДА) является одним из самых частых синдромов (до 25%). Он встречается при ряде заболеваний, сопровождающихся хронической кровопотерей [5], а также при воспалительных заболеваниях органов малого таза и кишечника (в 16–74% случаев) на фоне высоких показателей гепсидина [6]. В мире насчитывается 60 млн беременных, имеющих ЖДА, ее частота в среднем колеблется от 25% до 50%, а по уровню сывороточного железа (латентный железодефицит) — до 99% [7]. В России частота ЖДА у беременных — 40–65% [8]. Однако лишь у 20% женщин на этапе прегравидарной подготовки имелись достаточные запасы железа для адекватного эритропоэза во время беременности, что явилось предпосылкой включения коррекции железа в протоколы прегравидарной подготовки и ведения беременности [9, 10].
Фолиевая кислота — водорастворимый витамин В9 (птероилглутаминовая кислота) — жизненно необходима для метилирования ДНК, синтеза пуриновых и пиримидиновых оснований, аминокислот (метионина, серина, гистидина) и белков, холина, для обезвреживания гомоцистеина, стимуляции пластических процессов во всех тканях, для эритропоэза, эпигенетических процессов эмбриогенеза [11]. Дефицит фолатов при беременности приводит к ряду осложнений с развитием эндотелиальной дисфункции, индукцией окислительного стресса, активацией апоптоза и метилирования ДНК [12]. Дефицит потребления фолатов с пищей составляет 75% от минимально допустимого для здоровых женщин (400 мкг/сут) [13]. Поскольку при фолатном дефиците изменение биосинтеза S-аденозилметионина приводит к формированию пороков развития плода, таких как дефекты нервной трубки (spina bifida и анэнцефалия) (0,5% случаев беременности и 2% в структуре невынашивания), пороков сердца, дефектов формирования неба («волчьей пасти», «заячьей губы»), к врожденным аномалиям ЦНС, поражению органов зрения, в отдаленном периоде к расстройствам аутистического спектра и синдрому дефицита внимания, коррекция фолатдефицитных состояний включена в протоколы прегравидарной подготовки и при беременности [14]. Проблема возникновения гипергомоцистеинемии на фоне дефицита фолатов во время беременности также привела к риску сосудистых нарушений во время беременности и невынашиванию.
С целью обзора способов коррекции дефицита железа и фолиевой кислоты на современном этапе проведен отбор релевантных публикаций в базах PubMed и Google Scholar за период с 2012 по 2022 г.
Существующие подходы к лечению железодефицитных состояний и ограничения в применении препаратов железа
Необходимость адекватной коррекции железодефицитных состояний у гинекологических пациенток, при подготовке к беременности и во время беременности регламентируется клиническими протоколами [15]. «Золотым стандартом» лечения ЖДА являются железосодержащие препараты — преимущественно в пероральных формах в виде солей различной валентности, Fe II и Fe III. Особенности механизмов всасывания различных по валентности солей железа демонстрируют более высокую биодоступность Fe II (30–40%) как органических солей (глюконат, фумарат), так и неорганических (сульфат, хлорид). Однако неприятные органолептические свойства, значительное раздражение слизистой оболочки кишечника и диспепсические расстройства создают ряд ограничений и требуют соблюдения определенных условий при лечении. Z. Tolkien et al. [16] в метаанализе 20 исследований (n=3168) продемонстрировали повышение риска развития нежелательных диспепсических расстройств желудочно-кишечного тракта (ЖКТ) более чем в 2 раза на фоне применения пероральной терапии сульфатом железа в сравнении с плацебо (отношение шансов (ОШ) 2,32, 90% доверительный интервал (ДИ) 1,74–3,08 p<0,0001); в 7 рандомизированных исследованиях (n=1028) риск расстройств со стороны ЖКТ среди беременных повышался более чем в 3 раза (ОШ 3,33, 95% ДИ 1,19–9,28, p=0,02). Развитие диспепсических явлений снижает приверженность терапии, что может приводить к развитию ЖДА беременных в дальнейшем.
Органические соли Fe III (сукцинилат) и неорганические соединения Fe III (гидроксид железа в комплексе с полимальтозой) имеют лучшую переносимость, но их биодоступность составляет лишь 10%, что ограничивает их терапевтическую эффективность. Рекомендуемая доза элементарного железа для лечения железодефицита составляет 100–200 мг/сут. Более высокие дозы усиливают побочные эффекты [17].
Переизбыток железа также повышает риск оксидативного стресса (ферроптоза). Пероральная терапия железом может быть опасной для пациенток с продолжающейся кровопотерей, воспалительными заболеваниями кишечника, хроническими заболеваниями почек [18]. Объясняется это высокой экспрессией гепсидина, запускаемого провоспалительным интерлейкином 6 с последующим связыванием и распадом ферропортина в гепатоцитах, энтероцитах и макрофагах, с предотвращением транспорта железа в плазму блокировкой конкурентного доступа к железу. Происходит низкое насыщение трансферрина, и уменьшается доставка железа к развивающемуся эритробласту. При лабораторном обследовании наблюдаются формальные признаки повышения запасов железа (повышение ферритина выше нормы) и одновременно его функциональный дефицит (снижение насыщения трансферрина железом — меньше 20%) [19]. Образуется значительное количество атомов железа, не связанного с трансферрином. Этот слабосвязанный Fe3+ может нерегулируемым образом откладываться внутри клеток эндокринной системы, сердца и печени, где может вызвать окислительный стресс путем катализации перекисного окисления липидов (реакция Фентона) и образования активных форм кислорода (ферроптоз), что ведет к гибели лимфоидного аппарата с последующими негативными последствиями [20].
Содержание статьи
- 1 Особенности новой технологии Lipofer®
- 2 Доказательная база по эффективности и безопасности Lipofer®
- 3 Фолатный цикл, значение полиморфизмов ферментов MTHFR и DHFR в нарушении метаболизма фолиевой кислоты
- 4 Существующие ограничения по применению препаратов фолиевой кислоты
- 5 Препараты фолиевой кислоты и фолатов, история происхождения
- 6 Особенности и преимущества нового активного метаболита Quatrefolic®
- 7 Результаты доклинических и клинических исследований Quatrefolic®
- 8 Заключение
Особенности новой технологии Lipofer®
Для решения проблемы низкой биодоступности и плохой переносимости препаратов железа был предложен инновационный подход — микронизация железа с его последующей микроинкапсуляцией в лецитиновую оболочку. Пирофосфат железа — это обычная форма трехвалентного железа, используемая для доставки липосомального железа. Размер частиц пирофосфата железа уменьшается с помощью микронизации, что увеличивает соотношение площади поверхности молекулы и скорости растворения препарата. Микронизированное железо инкапсулируется лецитиновым липидным слоем — этот процесс носит название микроинкапсуляции (рис. 1) [21]. Сформированная микрокапсула Lipofer® имеет внешнюю липидную мембрану и внутреннее ядро, содержащее частицы железа. Внешний фосфолипидный слой защищает железо от воздействия ферментов слюны и желудочного сока, взаимодействия с щелочными соками, солями желчных кислот, кишечной флорой и свободными радикалами. Это позволяет существенно снизить частоту возникновения побочных эффектов со стороны ЖКТ и применять продукт при непереносимости стандартных препаратов железа и воспалительных заболеваниях ЖКТ. Микрокапсулы поглощаются из п ‘f0освета кишечника М-клетками тонкого кишечника (часть лимфатической системы), включаются в макрофаги путем эндоцитоза и через лимфатическую систему достигают гепатоцитов, где растворяются лизосомальными ферментами до высвобождения Fe III [22]. Микрокапсулы нетоксичны, лишены антигенных свойств и не подвергаются атаке со стороны иммунной системы, поэтому происходит таргетная доставка железа без повреждающего действия процессами окисления, что
‘efозволяет снизить дозу и преодолеть гепсидиновый барьер [23]. Таким образом, увеличение биодоступности железа за счет применения липосомальной формы препарата обеспечивает полноценную коррекцию дефицита железа даже при низких дозировках препарата. При низких дозах отмечена минимизация побочных эффектов и лучшая приверженность терапии, что крайне важно, учитывая ее длительность [24].
Доказательная база по эффективности и безопасности Lipofer®
Доклиническое исследование биоэквивалентности продукта Lipofer® (торговая марка Lipotec S.A.) в сравнении с традиционными препаратами железа продемонстрировало, что биодоступность Lipofer® была в 2,7 и 3,5 раза выше, чем у сульфата железа и простого пирофосфата железа соответственно [25]. В клинической практике проведен ряд исследований продукта. В исследовании R. Blanco-Rojo et al. [26] женщины с дефицитом железа получали фруктовый сок, обогащенный микрокапсулами пирофосфата железа, что сопровождалось нормализацией феррокинетических показателей и позволило сделать вывод о целесообразности обогащения фруктового сока микрокапс улированным железом для коррекции ЖДА у пациенток групп высокого риска.
В исследование A. Pleşea-Condratovici et al. [27] были включены 30 женщин с ЖДА в постменопаузе, у которых в анамнезе наблюдались побочные эффекты на фоне применения других препаратов железа. Через 8 нед. приема липосомального железа отмечено статистически значимое повышение гемоглобина и гематокрита с минимальными побочными эффектами со стороны ЖКТ, которые не потребовали отмены препарата в отличие от предшествующей терапии (рис. 2). У пациенток с рефрактерной анемией при миелодиспластическом синдроме применение Lipofer® по эффективности не уступало внутривенному введению препаратов железа [28].
Технология изготовления Lipоfer® повышает биодоступность железа и позволяет минимизировать риск побочных эффектов, обычно развивающихся при приеме железа.
Следует отметить снижение маркеров воспаления при коррекции анемии у женщин с хроническими воспалительными заболеваниями на фоне применения липосомального железа, что свидетельствует об отсутствии влияния гепсидина на биодоступность железа при использовании данной лекарственной формы [29, 30]. Липосомальное железо эффективно и у пациенток онкологического профиля, и при анемии на фоне хронической почечной недостаточности [31, 32]. Согласно результатам рандомизированного контролируемого клинического исследования F. Parisi et al. [33] применение пирофосфата железа в липосомальной форме показало свою эффективность в профилактике ЖДА у беременных женщин.
Таким образом, проведенные исследования продемонстрировали, что микрокапсуляция железа в липосомальную форму улучшает всасывание железа, тем самым повышая его биодоступность, и не вызывает выраженных побочных эффектов со стороны ЖКТ, связанных с применением конвенционных форм солей перорального железа. На основании проведенных исследований in vivo и in vitro Федеральным управлением по санитарному надзору за качеством пищевых продуктов и медикаментов (Food and Drug Administration, FDA) США пирофосфат железа (III) признан безопасным. Европейское управление по без-
опасности пищевых продуктов (The European Food Safety Authority, EFSA) также приняло решение о безопасности использования пирофосфата железа в качестве пищевой добавки [34].
Фолатный цикл, значение полиморфизмов ферментов MTHFR и DHFR в нарушении метаболизма фолиевой кислоты
Фолиевая кислота, поступающая в виде пищевых добавок или лекарственных средств, представляет собой биологически неактивную форму, из которой в гепатоцитах печени посредством фермента дигидрофолатредуктазы (dihydrofolate reductase, DHFR) биосинтезируется дигидрофолат и далее восстанавливается до тетрагидрофолата (ТГФ). Тетрагидрофолат метаболизируется серин гидроксиметилтрансферазой в 5,10-метилентетрагидрофолат (5,10- метилен-ТГФ), который необратимо восстанавливается до 5-метилтетрагидрофолата (5-methyltetrahydrofolate, 5-MTHF) при содействии фермента метилентетрагидрофолатредуктазы (methylentetrahydrofolate reductase, MTHFR). Метильная группа 5-MTHF переносится на гомоцистеин под действием кофермента витамина B12, который таким образом превращается в метионин. Метионин впоследствии превращается в S-аденозилметионин — ключевой биологический агент метилирования, универсальный донор метильных групп, участвующий в более чем 100 реакциях метилирования [35]. Метилирование — это один из эпигенетических механизмов контроля экспрессии генов, что важно для развития плода и долгосрочного здоровья человека. Превращение гомоцистеина в метионин также регенерирует ТГФ, который можно повторно использовать для синтеза 5,10-метилен-ТГ Ф или 10-формил-ТГФ, участвующий в биосинтезе пуринов и пиримидинов [36, 37].
В начале 1990-х годов был выявлен генетический полиморфизм (мутация), связанный с вариантом термолабильного фермента MTHFR, генетический вариант C677T. Недавно была идентифицирована вторая мутация, генетический вариант A1298C, которая состоит в замене аденина на цитозин в положении 1298, приводящей к замене глутамата на аланин. Этот полиморфизм связан с высокими ур eeвнями гомоцистеина (фактора риска развития сосудистых патологий) и снижением уровня фолиевой кислоты в плазме пациенток аналогично гомозиготности по C677T. Наличие обеих мутаций (C677T и A1298C) связано с более высокой частотой врожденных аномалий. Частота гетерозиготности полиморфизма гена MTHFR, который генерирует вариант C677T, составляет 30–40%, гомозиготности — 10–15% [38], что создает определенные проблемы в усвоении фолиевой кислоты организмом. DHFR играет ключевую роль в первой фазе превращения фолиевой кислоты в ТГФ. Полиморфизм гена DHFR встречается в 10–15% случаев. Дозы фолиевой кислоты выше 1 мг/сут могут приводить на фоне полиморфизма гена DHFR к накоплению неметаболизированной фолиевой кислоты в плазме и моче [39].
Существующие ограничения по применению препаратов фолиевой кислоты
Основные причины дефицита фолатов включают: 1) недостаточное потребление продуктов с высоким содержанием фолатов; 2) увеличение потребности в фолатах (беременность, особенно многоплодная, лактация); 3) нарушение фармакокинетики/метаболизма фолатов (полиморфизмы генов ферментов фо латного цикла, алкоголизм, ожирение, заболевания ЖКТ со снижением всасывания фолатов, ятрогенные причины — противоэпилептические средства, высокие дозы НПВС (ацетилсалициловая кислота, ибупрофен и ацетаминофен)) [40]. Для компенсации дефицита фолатов используют витамин В9, фолиевую кислоту. Коферментные функции фолиевой кислоты связаны не со свободной формой витамина, а с восстановленным птеридиновым производным с помощью ферментов. Генетические полиморфизмы ряда ферментов фолатного метаболизма, широко представленные у населения, д eeзозависимые фармакокинетические и фармакодинамические особенности фолиевой кислоты ограничивают применение препарата вследствие проблем с ее усвоением и накоплением неметаболизируемых продуктов метаболизма фолиевой кислоты в крови.
В ряде исследований продемонстрировано, что неметаболизируемая часть фолиевой кислоты снижает иммунную функцию в постменопаузе у женщин [41], в других исследованиях показано повышение онкогенеза [42]. Воздействие на плод неактивных метаболитов фолиевой кислоты отрицательно, в частности, достоверно повышен риск астмы и респираторных инфекций в раннем детстве [43]. Существуют противоречивые данные о влиянии неметаболизируемой части фолиевой кислоты на частоту преждевременных родов [44]. В США обнаружили связь между уровнем неметаболизируемой части фолиевой кислоты и иммунными дисфункциями за счет снижения активности NK-клеток, участвующих в развитии и поддержании толерантности в системе «мать — плод» [45].
Исследования на мышах показали, что высокое потребление фолиевой кислоты во время беременности имело побочные эффекты на развитие плода, отрицательно повлияло на эмбриональное развитие и на закрытие нервной трубки [46]. В опубликованном в 2018 г. критическом обзоре литературы было показано, что ранее рекомендованные большие дозы фолиевой кислоты (4 мг) для профилактики повторного рождения детей с пороками развития нервной системы являются неоправданными, особенно при обогащении продуктов питания, это связано и с проблемами усвоения высоких доз фолиевой кислоты [47]. Поэтому в клинических рекомендациях, утвержденных Минздравом России, фолиевая кислота представлена в дозе от 400 до 800 мкг/сут [48].
Высокие дозы фолиевой кислоты могут также маскировать любой дефицит витамина B12, поскольку существует тесная метаболическая взаимосвязь между фолиевой кислотой и витамином B12. В случае дефицита витамина B12 конверсия 5-MTHF в ТГФ значительно снижается. Синтез 5-MTHF ферментом 5,10-метилен-ТГФ-редуктаза необратим. Таким образом, 5-MTHF может использоваться только одним ферментом, B12-зависимой метионинсинтазой, что приводит к синтезу метионина с ТГФ. В случае дефицита витамина B12 этот процесс блокируется, и, как следствие, фолиевая кислота в клетках становится «метаболически захваченной» в форме 5-MTHF. Это состояние приводит к «дефициту псевдофолиевой кислоты», потому что, хотя клетки и имеют адекватный уровень фолиевой кислоты, она задерживается в 5-MTHF, который не может действовать как кофактор для биосинтеза пуринов и пиримидинов. Эта ситуация называется «ловушкой фолиевой кислоты» или «ловушкой метила» [49] и клинически проявляется как мегалобластная анемия.
При употреблении фолиевой кислоты в очень высоких дозах (>1000 мкг/сут) она может проникать в клетки в «свободной» форме и преобразовываться непоср e5дственно в ТГФ и ТГФ-полиглутаматы через пути, не зависящие от витамина В12. Таким образом, «свободная» фолиевая кислота может возобновить биосинтез ДНК и исправить анемию, не влияя на метилирование. Эта маскировка анемии, связанной с дефицитом витамина B12, приемом фолиевой кислоты затрудняет диагностику дефицита B12, что позволяет ему прогрессировать, вызывая невропатию.
Препараты фолиевой кислоты и фолатов, история происхождения
1-е поколение — фолаты пищевого происхождения. В 1931 г. L. Wills обнаружила связь между анемией и дефицитом питания. В 1941 г. H.K. Mitchell и R.J. Williams выделили фактор роста и назвали его фолиевой кислотой. 2-е поколение — синтез фолиевой кислоты. В 1945 г. R.B. Angier и E.L.R. Stokstad идентифицировали химическую структуру и синтезировали фолиевую кислоту, в США официально была утверждена рекомендация по применению 400 мкг фолиевой кислоты всеми женщинами детородного возраста [50]. Низкая растворимость и нестабильность фолиевой кислоты при хранении приводят к снижению биодоступности и ограничению ее приема, что способствовало разработке 3-го поколения фолатов — 5-метилтетрагидрофолат кальциевой соли (Calcio-5-MTHF). В 1995 г. Bioresearch Spa регистрирует использование 5-MTHF. Единственными ограничениями этой новой формы признаны плохая растворимость, влияющая на биодоступность, и ограниченная стабильность. 4-е поколение — синтез Quatrefolic®. В 2008 г. была разработана и запатентована новая соль фолиевой кислоты — (6S)-5-метилтетрагидрофолат глюкозаминовая соль: Quatrefolic® (зарегистрированная торговая марка Gnosis S.p.A), характеризующаяся долгосрочной стабильностью и более высокой растворимостью в воде, что повышает ее биодоступность. В 2010 г. Quatrefolic® получил одобрение FDA в качестве нового пищевого ингредиента (NDI), а в 2011 г. последовали официальные награды (NBT Awards) за степень инноваций. EFSA также одобрило данный продукт [51]. Важным моментом является отсутствие верхнего допустимого уровня потребления для Quatrefolic® согласно нормам потребления продуктов США, что позволяет рассматривать Quatrefolic® как безопасный продукт без риска передозировки [36].
Особенности и преимущества нового активного метаболита Quatrefolic®
По сравнению с фолатами предыдущего поколения Quatrefolic® имеет ряд преимуществ: полностью растворим в воде, что позволило значительно повысить биодоступность; солеобразование глюкозамином, натуральным веществом и эндогенным компонентом организма, гарантирует бóльшую солеустойчивость и максимальную безопасность использования. Quatrefolic® — активный и легкодоступный для транспортировки и усвоения в тканях метаболит фолиевой кислоты, который сразу встраивается в фолатный цикл, исключая возможность накопления неметаболизируемых продуктов обмена фолиевой кислоты в крови. Quatrefolic® не требует вмешательства ферментов фолатного цикла (MTHFR, DHFR) и поэтому может решить проблему усвоения фолиевой кислоты у пациенток с генетическим полиморфизмом ферментных систем фолатного цикла (рис. 3).
Quatrefolic® — это естественное производное фолиевой кислоты, физиологически присутствующее в организме. Было показано, что 5-MTHF является основным источником фолатов для плода [52]. Так, концентрация 5-MTHF в пуповинной крови в 2 раза превышала показатель в материнской. При этом данная форма составляла 89,4% среди всех фолатов в крови плода.
Quatrefolic® — единственная форма фолиевой кислоты, проникающая через гематоэнцефалический барьер [36]. Этот активный метаболит не маскирует дефицит витамина B12, потому что без данного кофактора не происходит регенерации ТГФ с необратимой блокировкой синтеза нуклеотидов.
Результаты доклинических и клинических исследований Quatrefolic®
В мировой научной литературе представлены данные биоэквивалентности между (6S)-5-метилтетрагидрофолатом и фолиевой кислотой как в доклинических, так и в клинических исследованиях [53].
Данные доклинического исследования биоэквивалентности продемонстрировали, что максимальная концентрация Quatrefolic® ((6S)-5-метилтетрагидрофолат глюкозаминовой соли) в плазме крови оказалась в 3,1 раза выше уровня фолиевой кислоты и в 1,8 раза выше уровня (6S)-5-метилтетрагидрофолат кальциевой соли (Метафолин®) — фолата 3-го поколения [54]. В этом же исследовании биодоступность Quatrefolic® после перорального приема в 9,7 раза превосходила биодоступность фолиевой кислоты, а также более чем на 10% — биодоступность предшественника Quatrefolic® — (6S)-5-метилтетрагидрофолат кальциевой соли (рис. 4). Также выявлено, что 5-MTHF улучшал NO-зависимые вазомоторные реакции, опосредованные эндотелием, и снижал образование супероксид-радикальных ионов в экспериментальных моделях [54].
В рандомизированном двойном слепом контролируемом клиническом исследовании Y. Lamers et al. показали лучшее насыщение фолатами эритроцитов у женщин репродуктивного возраста на фоне применения Quatrefolic® в сравнении с 400 мкг фолиевой кислоты в течение 12–24 нед. [55].
Также описано успешное применение Quatrefolic® у 33 семейных пар с полиморфизмом ферментов фолатного цикла, наблюдающихся у репродуктолога по поводу невынашивания беременности либо бесплодия не менее 4 лет. Большинство женщин ранее безуспешно лечились высокими дозами фолиевой кислоты (5 мг/сут). На фоне применения 5-MTHF общая частота продолжающихся беременностей составила 86,7% [56].
В мультицентровом рандомизированном клиническом исследовании была показана более быстрая нормализация уровня гомоцистеина — фактора риска сосудистых нарушений во время беременности — на фоне применения (6S)-5-метилтетрагидрофолат глюкозамина в сравнении с высокой дозой фолиевой кислоты [57].
В ретроспективном исследовании, проведенном в Италии, сравнивали две группы беременных женщин с риском преэклампсии. В первой группе пациентки получали 15 мг/сут
5-MTHF, начиная с первого триместра до конца беременности, во второй — плацебо. Обе группы получали аспирин в низких дозах в соответствии с рекомендациями Associazione Italiana Preeclampsia. 5-MTHF оказался эффективным в снижении частоты преэклампсии (21,7% против 39,7%, p=0,019) [58].
Заключение
Проблема биодоступности и переносимости препаратов железа и фолиевой кислоты остается актуальной на сегодняшний день. В России зарегистрирован новый инновационный продукт Вожея, который представляет собой уникальную комбинацию Quatrefolic® (активный метаболит 4-го поколения фолиевой кислоты — (6S)-5-метилтетрагидрофолиевой кислоты глюкозаминовая соль) и Lipofer® (микронизированный микроинкапсулированный пирофосфат железа). Сочетание двух высокотехнологичных молекул является инновационной формой, решающей ряд фармакокинетических и фармакодинамических проблем в коррекции дефицита основных микронутриентов ( железа и фолиевой кислоты) у женщин репродуктивного возраста. Вожея представляет интерес для широкого практического применения у женщин с высоким риском развития железо- и фолатдефицитных состояний — на прегравидарном этапе, во время беременности, в послеродовом периоде, а также у пациенток гинекологического профиля в качестве микронутриентной поддержки.
Благодарность
Редакция благодарит компанию «СиЭС Си» за оказанную помощь в технической редактуре настоящей публикации.
Acknowledgements
The technical edition is supported by CSC.
Сведения об авторах:
Кононова Ирина Николаевна — д.м.н., доцент кафедры акушерства и гинекологии РНИМУ им. Н.И. Пирогова Минздрава России; 117997, Россия, г. Москва, ул. Островитянова, д. 1; ORCID iD 0000-0003-3483-9464.
Карева Елена Николаевна — д.м.н., профессор кафедры молекулярной фармакологии и радиобиологии им. П.В. Сергеева РНИМУ им. Н.И. Пирогова Минздрава России; 117997, Россия, г. Москва, ул. Островитянова, д. 1;
профессор кафедры фармакологии лечебного факультета ФГАОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава России (Сеченовский Университет); 119991, Россия, г. Москва, ул. Трубецкая, д. 8, стр. 2; ORCID iD 0000-0002-9441-3468.
Доброхотова Юлия Эдуардовна — д.м.н., профессор, заведующая кафедрой акушерства и гинекологии лечебного факультета РНИМУ им. Н.И. Пирогова Минздрава России; 117997, Россия, г. Москва, ул. Островитянова, д. 1; ORCID iD 0000-0002-7830-2290.
Контактная информация: Кононова Ирина Николаевна, e-mail: irkonmed@mail.ru.
Прозрачность финансовой деятельности: никто из авторов не имеет финансовой заинтересованности в представленных материалах или методах.
Конфликт интересов отсутствует.
Статья поступила 05.10.2021.
Поступила после рецензирования 28.10.2021.
Принята e2 печать 24.11.2021.
About the authors:
Irina N. Kononova — Dr. Sc. (Med.), associate professor of the Department of Obstetrics and Gynecology, Pirogov Russian National Research Medical University; 1, Ostrovityanov str., Moscow, 117437, Russian Federation; ORCID iD 0000-0003-3483-9464.
Elena N. Kareva — Dr. Sc. (Med.), Professor of the P.V. Sergeev Department of Molecular Pharmacology and Radiobiology, Pirogov Russian National Research Medical University; 1, Ostrovityanov str., Moscow, 117437, Russian Federation; Professor of the Department of Pharmacology of the Medical Faculty, I.M. Sechenov First Moscow State Medical University (Sechenov University); 8 Build. 2, Trubetskaya str., Moscow, 119991, Russian Federation; ORCID iD 0000-0002-9441-3468.
Yuliya E. Dobrokhotova — Dr. Sc. (Med.), Professor, Head of the Department of Obstetrics and Gynecology, Pirogov Russian National Research Medical University; 1, Ostrovityanov str., Moscow, 117437, Russian Federation; ORCID iD 0000-0002-7830-2290.
Contact information: Irina N. Kononova, e-mail: irkonmed@mail.ru.
Financial Disclosure: no authors have a financial or property interest in any material or method mentioned.
There is no conflict of interests.
Received 05.10.2021.
Revised 28.10.2021.
Accepted 24.11.2021.
.
Информация с rmj.ru