Адаптация белкового компонента детских молочных смесей
И. Н. Захарова*, доктор медицинских наук, профессор
Ю. А. Дмитриева*, кандидат медицинских наук
Е. Ю. Демкина**
Е. Б. Мачнева**
*ГБОУ ДПО РМАПО МЗ РФ, Москва
**ЗАО «Лакталис Восток», Московская область
Вопросам вскармливания детей раннего возраста посвящено большое количество научных публикаций. Это обусловлено тем, что в последние годы среди педиатров и нутрициологов стала формироваться так называемая «концепция пищевого программирования», согласно которой характер питания ребенка в раннем возрасте предопределяет (программирует) особенности его метаболизма на протяжении всей последующей жизни, а значит, предопределяет предрасположенность к определенным заболеваниям и особенностям их течения. В настоящее время ни у кого не вызывает сомнений, что «золотым стандартом» вскармливания ребенка первого года жизни является грудное молоко, обладающее уникальным составом, обеспечивающим оптимальное физическое и нервно-психическое развитие младенца. Ингредиенты грудного молока не только способствуют нормальному росту малыша, но и оказывают влияние на процессы постнатальной дифференцировки тканей, формирование центральной нервной системы, слухового и зрительного анализатора, становление микрофлоры кишечника ребенка [1].
С каждым годом появляются новые данные о свойствах компонентов женского молока, каждый из которых необходим для гармоничного роста и развития детского организма. Бесспорно, одним из важнейших компонентов грудного молока является белок.
Женское молоко имеет самое низкое содержание белка по сравнению с молоком всех других млекопитающих (табл. 1).
Оптимальный уровень потребления белка позволяет не только обеспечить нормальные темпы роста и развития младенца, но и препятствует ускорению темпов биологического созревания, накоплению избыточной массы тела и чрезмерной нагрузке на незрелые желудочно-кишечный тракт (ЖКТ) и мочевыделительную систему ребенка. Функциональная способность почек у грудных детей отличается от таковой у взрослых. У детей снижена скорость клубочковой фильтрации по отношению к массе и площади поверхности тела, ограничена способность к концентрированию и выведению избытка кислот и воды. Повышенное потребление белка может привести к изменениям показателей осморегуляции, развитию ацидоза, повышенной экскреции натрия, калия, фосфора, хлора, а также метаболитов белкового обмена, что оказывает дополнительную нагрузку на почки ребенка [3]. В 2006 г. в работе, проведенной на нашей кафедре Еремеевой А. В., при сравнительной оценке состояния почек у детей в зависимости от характера вскармливания было показано, что при вскармливании младенцев смесью с высоким содержанием белка (1,76 г/100 мл) становление осморегулирующей функции почек происходит в условиях большей потенциальной нагрузки и характеризуется более высокой осмолярностью мочи с первых месяцев жизни ребенка. Кроме того, автором было установлено, что использование высокобелковой смеси у детей первого полугодия жизни с дебютом острого пиелонефрита характеризуется более выраженными метаболическими нарушениями и сопровождается снижением титруемой кислотности и экскреции аммиака с мочой. Данное наблюдение позволяет рассматривать количество потребляемого белка в качестве фактора, влияющего на сохранность тубулярных функций почек у грудных детей с микробно-воспалительным процессом в почечной ткани [4].
Взаимосвязь между высоким потреблением белка в раннем возрасте и предрасположенностью к избыточной массе тела в дальнейшем была показана в ряде крупных научных исследований еще в конце ХХ в. В 1995 г., анализируя уровень потребления основных пищевых веществ у детей 1–2 лет и сопоставляя затем полученные данные с индексом массы тела и динамикой прибавки в массе, Rolland-Cachera M. и соавт. показали, что высокое потребление белка в раннем возрасте увеличивает риск развития ожирения в предпубертатном периоде [5]. Механизмы развития ожирения при высокобелковой диете связаны с увеличением уровня инсулиногенных аминокислот в плазме крови, что стимулирует выброс инсулина и инсулиноподобного фактора роста (ИФР-1), который стимулирует пролиферацию адипоцитов и, таким образом, способствует развитию ожирения у ребенка [6].
Белок грудного молока состоит в основном из сывороточных протеинов, содержащих незаменимые аминокислоты в оптимальном для ребенка соотношении, и казеина. В раннем лактационном периоде соотношение между сывороточными белками и казеином в женском молоке достигает 80:20, что имеет очень важное биологическое значение для новорожденного. Во-первых, сывороточные белки являются основным источником незаменимых аминокислот, необходимых для роста и развития ребенка. Во-вторых, в структуре белков сыворотки преобладают мелкодисперсные фракции, которые легче ферментируются и быстрее усваиваются, что немаловажно в условиях транзиторной ферментативной незрелости желудочно-кишечного тракта. В отличие от женского, коровье молоко характеризуется преобладанием казеиновой фракции (80%), а основным белком сыворотки является бета-лактоглобулин, отсутствующий в молоке женщины (табл. 2).
Сывороточные белки женского молока представлены главным образом альфа-лактоальбумином, который является важным источником аминокислот, способен активно связывать кальций и цинк в кишечнике младенца и ускорять их всасывание. Казеиновая фракция белка женского молока также имеет свои особенности: в ней содержится 62,5% бета-казеина. Не так давно стало известно о существовании целого класса опиоидных пептидов, отличительной особенностью которых является способность образовываться в результате расщепления белков пищевого происхождения. В составе грудного молока имеется фермент, способный расщеплять бета-казеин с образованием различных фрагментов белка, в том числе бета-казоморфина, который регулирует физиологические процессы в организме ребенка через эндогенную опиоидную систему, обеспечивая адаптацию ребенка к родовому стрессу и регуляцию эмоциональной сферы, обладает антиноцицептивной активностью, оказывает влияние на становление и развитие центральной нервной системы ребенка [7]. Помимо белков, обладающих высокой пищевой ценностью, женское молоко содержит неметаболизируемые протеины, характеризующиеся устойчивостью к ферментации в желудочно-кишечном тракте и выполняющие преимущественно защитные функции в организме младенца.
Однако, несмотря на все рассмотренные преимущества грудного молока, питание российских детей первого года жизни в настоящее время характеризуется недостаточной распространенностью грудного вскармливания, что указано в Национальной программе оптимизации вскармливания детей первого года жизни в РФ [8]. В этой связи перед производителями детских молочных смесей стоит задача создания продукта, максимально приближенного по составу к эталону — грудному молоку.
Большинство современных молочных смесей производятся на основе коровьего молока. При этом основной принцип создания адаптированных смесей — максимальное приближение коровьего молока к составу и свойствам женского молока и их соответствие особенностям пищеварения и метаболизма ребенка первого года жизни. К основным требованиям, предъявляемыми Всемирной организацией здравоохранения (ВОЗ) — Комиссией по Продовольственному кодексу (Codex Alimentarius Commission) ФАО/ВОЗ (FAO, Food and Agriculture Organization of the United Nations, Продовольственная и сельскохозяйственная организация объединенных наций), Европейским научным обществом детских гастроэнтерологов, гепатологов и нутрициологов (European Society for Paediatric Gastroenterology, Hepatology and Nutrition, ESPGHAN), Управлением по санитарному надзору за качеством пищевых продуктов и медикаментов США (Food and Drug Aministration, FDA), в отношении белкового компонента, используемого при разработке рецептуры молочных смесей для вскармливания здорового ребенка, относятся следующие:
- снижение общего содержания белка;
- обогащение смеси сывороточными белками;
- введение в смесь незаменимых аминокислот.
В соответствии с техническим регламентом на молоко и молочную продукцию, принятым в Российской Федерации в 2008 г., уровень белка в смесях для детей первого полугодия жизни должен быть в пределах 1,2–1,7 г/100 мл.
На начальном этапе создания детского питания (1960–1970 гг.) смеси для вскармливания детей создавались на основе немодифицированного коровьего молока и являлись казеин-доминантными. В основе их приготовления лежало частичное удаление (путем осаждения) белка, при этом 80% оставшегося белка составляла казеиновая фракция. Впоследствии, наряду с дальнейшим снижением содержания белка в молочной смеси (до 1,4–1,6 г/100 мл), появилась возможность удаления избытка казеина и внесения в смесь сывороточных белков. В настоящее время заменители грудного молока на основе сывороточных белков признаны более физиологичными для вскармливания младенцев первых 6 месяцев жизни, так как они образуют более нежный сгусток, быстро эвакуируются из желудка, легко усваиваются и реже вызывают срыгивания и другие функциональные нарушения со стороны ЖКТ [9]. Кроме того, смеси на основе сывороточных белков содержат все незаменимые аминокислоты, а также способствуют более оптимальному формированию нормальной микрофлоры кишечника, чем «казеин-доминирующие» смеси [10].
Попытка дальнейшего снижения уровня белка в смесях часто оказывалась безуспешной, т. к. со снижением содержания белка резко уменьшалось и количество незаменимых аминокислот. Следует отметить, что незаменимыми для детей раннего возраста являются не 8, как для взрослых (триптофан, фенилаланин, лизин, треонин, метионин, лейцин, изолейцин, валин), а 9 аминокислот (+ гистидин), а для недоношенных — 11 (+ цистеин и тирозин). Дефицит любой из незаменимых аминокислот в пищевом рационе неизбежно ведет к нарушению синтеза белка, что соответственно приводит к задержке роста и развития организма.
Лимитирующей аминокислотой, во многом определяющей качественный состав белка в смеси, является триптофан, уровень которого в грудном молоке значительно выше, чем в коровьем. Триптофан является предшественником серотонина, одного из важнейших нейромедиаторов головного мозга, необходимого для формирования его структур. Он также способствует синтезу мелатонина, влияющего на формирование циркадных ритмов, нормализующего соотношение фаз сна и бодрствования ребенка, а также регулирующего аппетит и чувство насыщения. Триптофан участвует в процессе выработки ниацина — витамина В3 и никотиновой кислоты (витамин РР). В небольших количествах триптофан входит в состав гамма-глобулинов, фибриногена, казеина и других белков, стимулирует синтез гормона роста. Цистеин является компонентом глутатиона — важнейшего компонента антиоксидантной системы новорожденного. Метионин служит важнейшим донором лабильных метильных групп, необходимых для построения активного липотропного соединения холина, синтеза пиримидинового основания тимина, построения биогенного амина адреналина, метаболизма никотиновой кислоты и гистамина. Тирозин является предшественником катехоламинов (адреналина, норадреналина, допамина). Кроме того, из него образуются гормон щитовидной железы тироксин и пигментное вещество меланин. Из гистидина синтезируется гистамин — медиатор аллергического воспаления. Кроме того, при производстве детских молочных смесей большое внимание уделяется такой аминокислоте, как треонин, содержание которой в молочной сыворотке выше, чем в грудном молоке. В опытах на животных доказано, что высокое содержание треонина в сыворотке крови ведет к повышению концентрации в головном мозге глицина и серина, что в свою очередь является фактором риска развития патологии головного мозга в постнатальном периоде. Треонин может снижать уровень других нейтральных аминокислот в мозге за счет конкуренции на уровне транспортных систем гематоэнцефалического барьера [11].
С учетом аминокислотного профиля коровьего молока, для обеспечения потребности новорожденного во всех незаменимых аминокислотах смеси должны были бы содержать не менее 1,5 г/100 мл белка. Однако в недавних исследованиях было показано, что обогащение смеси альфа-лактальбумином — основным белком грудного молока — позволит, с одной стороны, снизить общий уровень белка, а с другой стороны, получить близкий к грудному вскармливанию баланс аминокислот у детей, получающих искусственное вскармливание. Исследования Lien E. (2003), Davis A. и соавт. (2004) показали, что кормление детей первых месяцев жизни смесью со сниженным содержанием белка, обогащенной альфа-лактальбумином, обеспечивает нормальные темпы физического развития младенцев, благоприятно влияет на функционирование ЖКТ, уменьшая частоту запоров и срыгиваний, а также обеспечивает поддержание адекватного уровня незаменимых аминокислот в сыворотке крови вскармливаемых детей [12, 13]. Кроме того, в работе Bettler J. и Kullen M. (2007) впервые был продемонстрирован пребиотический эффект смеси, обогащенной альфа-лактоальбумином. В исследовании было показано, что кормление детей данной смесью приводит к достоверному увеличению содержания бифидобактерий в кишечнике до значений, аналогичных таковым при грудном вскармливании [14].
Все заменители женского молока в настоящее время обогащены таурином, присутствующим в грудном молоке в количестве 35–45 мг/л и являющимся условно незаменимой аминокислотой для детей первого полугодия жизни. Таурин стимулирует развитие нервной ткани, рост, дифференцировку сетчатки глаза, надпочечников, эпифиза, гипофиза, слухового нерва. Он принимает участие в защите клеточных мембран от экзогенных токсинов, обладает мембраностабилизирующим и антитоксическим действием. Таурин играет большую роль в процессе конъюгации желчных кислот, повышении иммунного ответа за счет стимулирования фагоцитарной активности нейтрофилов. Отмечено и положительное воздействие таурина на сократительную способность миокарда посредством влияния на распределение внутриклеточных потоков ионов кальция. Таурин особенно необходим детям первых месяцев жизни, родившимся недоношенным, с признаками морфофункциональной незрелости или постгипоксического повреждения центральной нервной системы.
В настоящее время большинство производителей детских молочных смесей придерживаются традиционного способа производства. Он заключается в получении молочной сыворотки путем осаждения мицелл казеина за счет добавления кислоты либо сычужного фермента и, вследствие этого, снижения уровня рН молока. К сожалению, данный способ имеет свои недостатки. Во-первых, в сыворотке остается часть ферментов и химических веществ, образующихся в процессе коагуляции. Во-вторых, при снижении уровня рН сыворотки происходит увеличение числа молочнокислых бактерий, удаление которых производится с помощью термической обработки, в результате которой белки могут подвергнуться денатурации, изменяются их свойства, а также снижается биодоступность и биологическая ценность [15]. Помимо этого, попытки снижения количества белка в молочной смеси, к чему стремится большинство производителей, лимитированы минимальной концентрацией незаменимых аминокислот, которая необходима для полноценного развития ребенка. Многие производители снижают концентрацию белка, но повышают его биологическую ценность за счет введения в состав смеси альфа-лактальбумина. Однако и в данном случае не всегда удается достичь желаемого результата, так как процесс введения альфа-лактальбумина лимитирован уровнем содержания треонина, который не должен быть превышен.
В настоящее время есть только один производитель детских молочных смесей, который решает эти проблемы путем применения принципиально новой технологии, в 2001 г. получивший международный патент на изобретение качественного белка Prolacta. Впервые в качестве сырья для получения белка Prolacta была использована не молочная сыворотка, а непосредственно молоко. С помощью мембранных технологий сывороточные белки напрямую экстрагируются из сепарированного молока без применения высокотемпературной обработки, химического и ферментативного воздействия, сопряженных в процессе производства с получением молочной сыворотки [16, 17].
В зависимости от размера пор применяемых мембран выделяют следующие виды мембранных технологий:
- Микрофильтрация, использующая мембраны с порами диаметром более 100 нм (1 нм = 10-9 м). Микрофильтрационные мембраны задерживают бактериальные и соматические клетки, жировые капельки, мицеллы казеина, крупные белковые агрегаты и беспрепятственно пропускают белки молока и низкомолекулярные компоненты (соли, лактозу).
- Ультрафильтрация, при которой размер пор мембраны находится в интервале 1–100 нм. Такие мембраны используются для селективного фракционирования белков по их молекулярным массам, разделения белка и лактозы молочной сыворотки, а также для отделения негидролизованного белка от коротких пептидов и других малых молекул в ходе получения ферментативных белковых гидролизатов.
- Нанофильтрация, применяющая мембраны с размером пор 0,1–1 нм, позволяет проводить обессоливание пищевых веществ, в том числе низкомолекулярных (пептиды и лактоза). Нанофильтрационные мембраны задерживают макромолекулы растворимых белков, пептидов, лактозы, пропуская ионы минеральных солей, воду.
- Обратный осмос (поры диаметром около 0,1 нм, проницаемы только для воды) позволяет концентрировать пищевые вещества и получать высокоочищенную питьевую воду [18].
Важно подчеркнуть, что хотя мембранные технологии и являются по формальным признакам нанотехнологиями, их продукция (пищевые вещества в виде очищенных фракций) не относится к наноматериалам, так как не содержит наночастиц, а представлены только веществами в традиционных для питания человека формах. Главное преимущество использования мембранных технологий в производстве белка для питания детей раннего возраста — возможность получения продукта с регулируемым аминокислотным составом. Оптимизированный белок Prolacta — это изолят сывороточных белков молока, полученный с использованием методов микрофильтрации, ультрафильтрации, нанофильтрации и обратного осмоса [18]. Prolacta является высококачественным белком, полностью сохранившим свои нативные свойства, благодаря мембранной технологии производства в условиях низких температур и при отсутствии воздействия кислот, вызывающих денатурацию. Вследствие этого Prolacta не теряет свою биологическую ценность в процессе производства, чего трудно достичь при традиционном методе производства детских молочных смесей. Кроме того, в белке Prolacta количество и уровень аминокислот полностью контролируем, гарантирован и постоянен [16, 17]. В табл. 3 представлен аминокислотный состав белка Prolacta в сравнении с белком деминерализованной молочной сыворотки [18].
В 2001 г. в Национальном институте агрономических исследований г. Клермон-Ферран во Франции французским ученым Ф. Патюро-Мираном было проведено экспериментальное исследование на животных с целью оценки качества белка Prolacta. Автор продемонстрировал, что коэффициент усвояемости белка PDCAAS (Protein Digestibility Corrected Amino Acid Score, аминокислотный скор, скорректированный по усвояемости), ФАО, для белка Prolacta был на 16% выше, чем в белке сыворотки, применяемом в традиционных молочных смесях [19].
Таким образом, хотя и ни одна современная смесь, несмотря на максимальную адаптацию, не может полностью соответствовать грудному молоку, учитывая наличие в нем значительного количества важнейших биологически активных компонентов, воссоздать которые невозможно даже в условиях современных технологий производства продуктов детского питания, безусловно, необходимы дальнейшие исследования по изучению эффективности и безопасности введения различных ингредиентов в состав молочных смесей, а также поиск новых возможностей приближения их формул к составу грудного молока. В этой связи принципиально новый и не имеющий аналогов способ производства белка Prolacta для смеси Celia® Expert с использованием мембранных технологий может помочь решить основные проблемы адаптации белкового компонента детских молочных смесей.
Литература
- Захарова И. Н., Дмитриева Ю. А., Суркова Е. Н. Отдаленные последствия неправильного вскармливания детей. М., 2012. 77 с.
- Кильвайн Г. Руководство по молочному делу и гигиене молока. М.: Россельхосиздат, 1979. 205 с.
- Коровина Н. А. и соавт. Обоснование потребления белка у детей раннего возраста, больных пиелонефритом // Российский педиатрический журнал. 2005. № 6. С. 27–30.
- Еремеева А. В. Функциональное состояние почек у детей раннего возраста при вскармливании смесями с различным содержанием белка. Автореф. канд. мед. наук. М., 2006. 24 с.
- Rolland-Cachera M. F., Deheeger M., Akrout M., Bellisle F. Influence ofmacronutrients on adiposity development: a follow up study of nutrition and grow from 10 months to 8 yers of age // Int J of Obesity. 1995; 19: 573–578.
- Koletzko B., Kries R., Closa R. et al. Lower protein in infant formula is associated with lower weight up to age 2 y: a randomized clinical trial // A J Clin. Nutr. 2009; 89: 1–10.
- Михеева И. Г. и соавт. Опиоидные пептиды экзогенного происхождения В-казоморфины и питание детей раннего возраста // Педиатрия. 2003. № 5. С. 1–4.
- Национальная программа оптимизация вскармливания детей первого полугодия жизни в Российской федерации. М., 2010. 64 с.
- Конь И. Я. Современные представления о питании детей в раннем постнатальном периоде // Российский журнал гастроэнтерологии, гепатологии и колопроктологии. 2001. № 11, с. 63–67.
- Wharton V. A., Balmer S., Scott P. Protein nutrition, faecal flora and iron metabolism: the role of milk-based formulae // Acta paediatr. Suppl. 402, 1994, p. 24–30.
- Gunter Boehm, Heidy Cervantes, Gilda Georgi et al. Effect of Increaseing Dietary Threonine Intakes on Amino Acid metabolism of the Central Nervous System and Peripheral Tissues in Growing Rats // International Pediatric Research Foundation. 1998; 44 (6): 900–906.
- Lien E. L. Infant formula with increased concentrations of alpha-lactalbumin // Am. J. Clin. Nutr. 2003; 77 (6): 1555 S-1558 S.
- Lien L. E., Davis A. M., Euler A. R. et al. Growth and safety in term infants fed reduced-protein formula with added bovine alpha-lactaalbumin // J. Ped. Gastr. And Nutr. 2004; 38: 170–176.
- Bettler J., Kullen M. J. Infant formula enriched with alpha-lactalbumin has a prebiotic effect in healthy term infants // J. Pediatr. Gastr. And Nutr. 2007; 44 suppl 1: e197, PN 1–11.
- Кешишян Е. С., Алямовская Г. А., Демкина Е. Ю. Инновационный подход к созданию молочных смесей для вскармливания детей раннего возраста // Вопросы детской диетологии. 2011; 9 (12): 15–20.
- Демкина Е. Ю. Содержание аминокислот в белке как критерий качества молочной смеси // Вопросы современной педиатрии. 2011. 3 (10): 20–25.
- Organisation Mondiale de la Propriete Intellectuelle. DEMANDE INTERNATIONAL PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT), Numero de publication internationale WO 01/93689 A1, Date de la publication internationale 13 Decembre, 2001.
- Гмошинский И. В., Зилова И. С., Зорин С. Н., Демкина Е. Ю. Мембранные технологии — инновационный метод повышения биологической ценности белка для питания детей раннего возраста // Вопросы современной педиатрии. 2012. 3 (11): 14–21.
- Unite de Nutrition Humaine, (Univ. Clermont 1), Alimentation Humaine, Centre de recherche de Clermont-Ferrand-Theix, CLERMONT-FERRAND CEDEX 1, FRA. Evaluation de la qualite nutritionnelle des proteins de 3 aliments proteiques experimentaux. Unite Nutrition et Metabolisme Proteique INRA et CRNH de Clermont Ferrand, Patureau-Mirand.
Статья опубликована в журнале Лечащий Врач
материал MedLinks.ru